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Frame Error Probability of Frequency-Flat
Block Fading Channels with Frame Repetition

Marc Sanchez Net∗

ABSTRACT. — This article studies the frame error probability of frequency-flat block

fading channels assuming that no interleavers are used at the transmitter and receiver.

This assumption is typically applicable for very slow fading channels, where

interleaving is not possible because it requires too much storage or it introduces too

much delay. In the context of space exploration, such channels can occur between

landed spacecraft on the lunar or Martian surface and a Deep Space Network station,

as shown by our previous work.

Two figures of merit are considered: First, we study the frame error probability for a

link impaired by frequency-flat multi-path fading effects where data is transmitted

using traditional forward error correction codes. Then, we extend the analysis to

estimate this same quantity if a second copy of each coded frame is sent after a fixed

time delay, i.e., errors due to fade events are protected through a combination of

coding and repetition. We demonstrate that using this hybrid approach can

significantly improve link performance (measured in terms of Eb/N0 for a given frame

error rate) and is therefore a good alternative for links where interleaving is

impractical.

I. Introduction

In a previous article we studied the multi-path fading effects affecting a link between a

rover on the lunar South Pole and a Deep Space Network (DSN) antenna [1]. We

showed that, assuming moderate data rates (between 1 kbps and 0.5 Mbps), the link

can be modeled as a frequency-flat fading channel that with a Gaussian-shaped power

spectral density (PSD). We also showed that the channel coherence time is large (on
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the order of 50 msec) compared to the symbol duration time, which led to the

conclusion that the fading process is slow-varying.

In this article, we study the frame error probability of this type of channel under the

assumption of block fading and no interleaving. In other words, we consider that deep

fades in the system last long enough to wipe out entire frames and, consequently, the

channel can be approximated as an ON/OFF process. Note that this approximation is

only valid if the duration of a frame is significantly smaller than the channel’s

coherence time. For instance, a lunar rover transmitting 1024 low density parity-check

(LDPC) frames at 500 kbps using a binary phase-shift keying (BPSK) modulation will

transmit an entire frame with 2.05 msec approximately. Therefore, if the coherence

time is 50 msec, then the system will effectively experience block fading.

The results of this article can be applied in at least two practical settings: On the one

hand, the transmitter can transmit copies of any given frame after a given delay and

tag each of them with a sequence number, which is then used by the receiver to

identify and discard any secondary copies it correctly decodes. On the other hand, this

multi-copy scheme can be used in combination with an Automatic Repeat reQuest

mechanism (e.g., the Licklider Transmission Protocol) to increase errorless system

throughput. Indeed, it is well-known that feedback can increase capacity if the

channel has memory (as is the case with fading channels), and the feedback is not

provided to the transmitter instantaneously [2].

The reminder of this paper is organized as follows: First, we formalize the received

signal, channel and receiver models, including the fading channel approximation as an

ON/OFF process. We then show how this simplified system model can be used to

estimate Frame Error Rate (FER) curves as a function of signal-to-noise rate (SNR),

and provide their asymptotic behavior. Then, we extend the analysis to consider a

communication scheme in which multiple copies of a frame are sent over the channel

delayed in time by τ seconds. Finally, we conclude by applying our results to a link

between the lunar South Pole and a DSN station.

II. System Model

A. Signal Model

We consider that the transmitter sends a BPSK signal with residual carrier.

Therefore, the complex baseband equivalent of received signal at the DSN station can

be expressed as [3]

r(t) =
√
PrF (t)ej[2π(fc+fd+rd(t))t+βm(t)g(t)+θc] + n(t), (1)

where Pr is the total received signal power, m(t) =
∑∞
k=−∞ akp(t− kTs) represents

the BPSK modulated signal with the k-th bit taking on values ak ∈ {+1,−1}, p(t) is a

unit-power rectangular pulse of duration Ts, fc and θc denote the carrier frequency

and phase respectively, fd represents the Doppler frequency shift, and rd(t) is the
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Doppler rate. Data is modulated onto a subcarrier of either square or sine waveform,

i.e., g(t) = sign (2πfsct) or g(t) = sin (2πfsct), using a modulation index β < 90 deg.

Finally, n(t) is a zero mean complex Additive White Gaussian Noise (AWGN) with

two-sided power spectral density N0

2 , and F (t) denotes the complex fading process.

B. Fading Process Model

Based on our previous article, we consider that the channel can be modeled as a

normalized complex Gaussian process F (t) such that

F (t) = FI(t) + jFQ(t), (2)

where

FI(t) ∼N (s cos [2π (fc + fd + rd(t)) t] , b0) (3)

FQ(t) ∼N (s sin [2π (fc + fd + rd(t)) t] , b0), (4)

b0 and s measure the strength of the scattered and LoS rays respectively (in units of

power), and Ωp = s2 + 2b0 is normalized to 1. Additionally, the second-order moments

of the stochastic process are given by a Gaussian power spectral density function such

that

S(f) ≈ b0√
2πσf

e
− (f−fd)2

2σ2
f , (5)

where σf is the Doppler spread or, equivalently, the inverse of the channel’s coherence

time [4].

It is sometimes useful to parameterize this fading channel using a complimentary set

of variables. In particular, if we define the Rice factor as K = s2/2b0, then the

channel is said to experience Rayleigh fading if K = 0, while Rician fading occurs for

K > 0. Additionally, the probability density functions for the fading envelope and

power, denoted α(t) = |F (t)| and α2(t) respectively, are known to be

pα (x) =
x

b0
e−

x2

2b0 (6)

pα2 (x) =
1

2b0
e−

x
2b0 , (7)

for Rayleigh fading, and

pα (x) =
x

b0
e−

x2+s2

2b0 I0

(
xs

b0

)
(8)

pα2 (x) =
1

2b0
e−

x+s2

2b0 I0

(
s
√
x

b0

)
, (9)

for Rician fading.
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C. Receiver Model

We model the DSN antenna receiving subsystem as an idealized system where the

Phased-Lock Loop provides perfect carrier synchronization and timing. We also

assume that the fading process F (t) is slow varying such that, at any point in time,

the instantaneous channel SNR is experienced by all symbols within a codeword.

Therefore, the average frame error rate at the receiver output will depend on the

fading-corrected SNR ζ(t) = α2(t)γ, where γ denotes the energy per bit to spectral

noise density ratio of the constant AWGN noise.

Let f (γ) denote the characteristic curve of the code used in the system assuming the

channel is only affected by AWGN noise. Then, in the presence of slow block fading

and without interleaving, the average FER can simply be estimated by using the

fading-corrected signal-to-noise ratio instead:

FER (γ) =

∞∫
0

f
(
α2γ

)
pα2

(
α2
)
d
(
α2
)
, (10)

where pα2

(
α2
)

is the probability density function of the Rayleigh or

Rician-distributed fading power. Unfortunately, no analytic expressions are generally

available for f(·) and, therefore, we must resort to numerical integration to obtain any

results. However, if f(·) has a sufficiently steep waterfall region and low-enough error

floor, we can approximate its shape by an inverted heavy-side function such that

f
(
α2γ

)
≈

1 if α2γ ≤ δΩp
0 if α2γ > δΩp,

(11)

where δ is a constant that must be calibrated so that the FER error is minimized.

Consequently, the average FER as a function of signal-to-noise ratio after this

simplification becomes

FER (γ) =1 · Pα2

(
α2 ≤ δΩp

γ

)
+ 0 · Pα2

(
α2 >

δΩp
γ

)
=Pα2

(
α2 ≤ δΩp

γ

)
= Pα

(
α ≤

√
δΩp
γ

)
.

(12)

In other words, we have modeled the system’s performance as an ON/OFF channel

where frame errors occur if and only if the fading envelope falls below a certain

threshold (and vice versa). This threshold depends on the link’s γ, as well as an

empirical constant δ that must be calibrated for the code and receiver under

consideration.

D. Definition of Energy per Bit in Multi-Copy Systems

Up until this point we have discussed the receiver performance in terms of the energy

per transmitted bit to spectral noise density ratio γ. In traditional coded systems,

where each frame is sent once, this value is simply estimated as the energy per symbol
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to spectral noise density ratio minus the code rate, i.e., γ1 = Es
N0
−R in logarithmic

scale, where R < 1 denotes the code rate. Additionally, this quantity is also equal to

the energy per information bit to spectral noise density ratio Eb
N0

, since each bit is only

sent once.

The same idea applies to multi-copy systems. However, in this case each information

bit is sent multiple times over the channel and, consequently, a transmitted bit is no

longer equivalent to an information bit. Instead, the following relationship holds:
Eb
N0

= γ + n, in logarithmic scale, where n denotes the number of times an information

bit is sent over the channel. Notionally, the factor n accounts for the fact that the

transmitter needs to spend n times more energy to transfer the same amount of

information. Or, equivalently, the transmitter needs to send data at a rate n times

faster than if no additional copies were sent.

For the purposes of this article, all equations presented in the following section are

expressed in terms of γ rather than Eb
N0

since they are slightly easier to work with.

However, when we report the performance of multi-copy schemes and compare it to

single-copy systems we translate all plots to Eb
N0

to ensure that we utilize the same

units.

III. Frame Error Probability

Let p1 denote the frame error probability in a channel experiencing block fading and

modeled as described in Section II.

Lemma 1. Assume that the fading channel is Rayleigh distributed and a frame error

occurs if and only if α(t) ≤
√

δΩp
γ . Then,

p1 = 1− e−
δ
γ . (13)

The proof is given in Appendix A-A.

Lemma 2. Assume that the fading channel is Rician distributed and a frame error

occurs if and only if α(t) ≤
√

δΩp
γ . Then,

p1 = 1−Q
(√

2K,
√

2(K + 1) δγ

)
(14)

where Q (a, b) denotes the Marcum Q function. The proof is given in Appendix A-B.

Lemma 3. Consider a Rayleigh or Rician fading channel with arbitrary PSD. Then,

as γ →∞,

p1 ∼
1

γ
. (15)

The proof is a special case of Appendix C.
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IV. Dual-Copy Frame Error Probability

Let p1 denote the frame error probability in a channel experiencing block fading and

modeled as described in Section II. Also, let p2 be defined as the probability of

dropping two copies of a frame that are sent τ seconds apart.

Lemma 4. Assume that the fading channel is Rayleigh distributed and an error

occurs if and only if α2(t) ≤ δΩp
γ . Let α1 = α(t) and α2 = α(t+ τ). Then,

p2 =P

(
α1 ≤

√
δΩp
γ , α2 ≤

√
δΩp
γ

)

=

√
δΩp/γ∫
0

√
δΩp/γ∫
0

α1α2

A
e−

b0
2A (α2

1+α2
2)I0

(
α1α2

A

√
µ2

1 + µ2
2

)
dα1dα2,

(16)

where

A =b20 − µ2
1 − µ2

2 (17)

µ1(τ) =

∞∫
−∞

cos (2πfτ) df (18)

µ2(τ) =

∞∫
−∞

sin (2πfτ) df. (19)

The proof is given in Reference [5], Equation (3.7-13).

Lemma 5. Assume the same conditions as in Lemma 4. Assume also that the fading

channel is characterized by a Gaussian PSD as in Equation 5. Let τn = τ
Tc

denote the

normalized delay and ρ = e−2(πτn)2

denote the normalized correlation between two time

instants separated by τn. Then,

p2 = p1 − e−
δ
γ [Q (z, zρ)−Q (zρ, z)] (20)

with z =
√

2
1−ρ2

δ
γ . The proof is given in Appendix B-A.

Corollary 5.1. Assume the same conditions as in Lemma 5. Assume also that

τn ≥ 1
2 . Then,

p2 ≈
[
1− e−

δ
γ

]2
. (21)

The proof is given at the end of Appendix B-A.

Lemma 6. Assume that the fading channel is Rician distributed and an error occurs

if and only if α2(t) ≤ δΩp
γ . Let α1 = α(t) and α2 = α(t+ τ). Then,

p2 =P

(
α1 ≤

√
δΩp
γ , α2 ≤

√
δΩp
γ

)
=

√
δΩp/γ∫
0

√
δΩp/γ∫
0

fα (α1, α2) dα1dα2, (22)
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where

fα (α1, α2) =
α1α2

(2π)2A

2π∫
0

2π∫
0

e
− 1
A

[
b0
2 z1+s(α1z2+α2z3)−α1α2z4−s2z5

]
dθ1dθ2 (23)

and

z1 =α2
1 + α2

2 (24)

z2 =µ1 cos (θ1 − φτ ) + µ2 sin (θ1 − φτ )− b0 cos θ1 (25)

z3 =µ1 cos θ2 + µ2 sin θ2 − b0 cos (θ2 − φτ ) (26)

z4 =µ1 cos (θ1 − θ2) + µ2 sin (θ1 − θ2) (27)

z5 =µ1 cosφτ + µ2 sinφτ − b0 (28)

φτ =2πfcτ. (29)

A, µ1 and µ2 are defined in Equations 17, 18 and 19 respectively. The proof is given

in Appendix B-B.

Lemma 7. Assume the same conditions as in Lemma 6. Assume also that the fading

channel is characterized by a Gaussian PSD and define ρ as in Lemma 5. Then,

p2 = p1 −

√
δΩp/γ∫
0

2π∫
0

α

2πb0
e−

1
2b0

[α2−2αs cos θ+s2]Q

(√
2K

1−ρ2 z1,
√

2(K+1)
(1−ρ2)

δ
γ

)
dθdα (30)

where

z1 (α, θ) =

√(ρα
s

)2

+
2ρα

s
[cos (θ − φτ )− ρ cos θ] + 1 + ρ2 − 2ρ cosφτ . (31)

The proof is given in Appendix B-C.

Corollary 7.1. Assume the same conditions as in Lemma 7. Assume also that

τn ≥ 1
2 . Then,

p2 ≈
[
1−Q

(√
2K,

√
2(K + 1) δγ

)]2
. (32)

The proof is given in Appendix B-D.

Lemma 8. Consider a Rayleigh or Rician fading channel with arbitrary PSD.

Assume that a frame error occurs if and only if α2(t) ≤ Ωp
γ and both copies of a frame

are lost. Then, as γ →∞

p2 ∼
1

γ2
. (33)

The proof is a special case of Appendix C.

V. n-Copy Frame Error Probability

Consider the channel model presented in Section II. Let pn denote the frame error

probability in a block fading channel assuming that the transmitter sends n copies of
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the frame τ seconds apart from each other and an error occurs if and only if all n

copies are erroneously decoded.

Lemma 9. Assume that the fading channel is either Rayleigh or Rician distributed

with Gaussian PSD and that a frame error occurs if and only if α2
i (t) ≤

δΩp
γ ∀i ∈ [1, n],

where αi(t) = α(t+ (i− 1)τ). Then,

pn =

√
δΩp
γ∫

0

(n)
· · ·

√
δΩp
γ∫

0

2π∫
0

(n)
· · ·

2π∫
0

fα,θ (α,θ) dθdα, (34)

where

fα,θ (α,θ) =

∏n
i=1 αi

(2π)n
√
|Σ|

exp

[
−1

2
(z − su)

T
Σ−1 (z − su)

]
, (35)

z =
[
α1 cos θ1 α1 sin θ1 α2 cos θ2 α2 sin θ2 · · · αn cos θn αn sin θn

]T
, (36)

u =
[
1 0 cos (φτ ) sin (φτ ) · · · cos (nφτ ) sin (nφτ )

]T
, (37)

and Σ ∈ R+
2n×2n is a symmetric matrix such that

Σij =

0 if i+ j is odd

b0e
− 1

2 (π|i−j|τn)2

if i+ j is even.
(38)

The proof follows directly from extending the results of Appendix B-B to an n-copy

transmission scheme.

Lemma 10. Assume the same transmission scheme as in Lemma 9 and consider a

Rayleigh or Rician block fading channel with arbitrary PSD. Then, for all values of τ ,

as γ →∞,

pn ∼
1

γn
. (39)

The proof is given in Appendix C.

The result of Lemma 10 is particularly interesting. Indeed, it highlights the fact that

even for large SNR conditions, the added benefit (in terms of FER reduction) per

extra frame copy sent by the transmitter decreases.1 Furthermore, this problem is

even more notorious at the low SNR regime, where sending multiple copies of a frame

results in several errors at the receiver with high probability, thus wasting large

amounts of energy (intuitively, if the channel conditions are very bad, the optimal

strategy is to pause transmission until the fade event has finished). Therefore, we

expect that for practical purposes the number of frame copies sent by the transmitter

will be limited to a handful at most.

1This can be obtained simply by taking the derivative of Equation 39 with respect to n and noting

that it is negative for all γ, n > 0.
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VI. System Model Calibration

Before validating our system model against simulated results, we succinctly summarize

how to calibrate its parameter δ. In particular, let f(γ) denote the function that

returns the FER as a function of Eb
N0

for a given modulation and coding scheme for the

AWGN channel.2 Furthermore, let the frame error rate estimate obtained through

numerical integration and through our approximation be defined as follows:

FER1 (γ) =

∞∫
0

f
(
α2γ

)
p
(
α2
)
dα2 (40)

FER2 (γ, δ) =

√
δΩp
γ∫

0

p(α)dα. (41)

Then, the relative error caused by our ON/OFF approximation for a given γ can be

measured as

εr (γ, δ) =
FER2 (γ, δ)− FER1 (γ)

FER1 (γ)
. (42)

Therefore, the optimal choice of δ satisfies

δ∗ = arg min
δ

∞∫
0

ε2
r (γ, δ) dγ. (43)

To solve this minimization problem we can follow two approaches: On the one hand,

this last equation is clearly convex and therefore its minimum can be found by

differentiating with respect to δ (assuming that FER1 (γ) constant) and equating the

resulting expression to zero. Unfortunately, this procedure yields equations that

cannot be solved analytically and, consequently, we must rely on numerical methods.

Therefore, it is easier to simply obtain δ∗ by applying numerical minimization directly

to Equation 43.

To exemplify the process of calibration, we consider once again a link where data is

first encoded using the CCSDS LDPC with rate 1/2 and 1024 bit frame size, and the

modulated using a BPSK modulation. The FER vs. γ curve for the AWGN channel

can be obtained from Reference [6], which provides in a finite set of discrete points

(γi, f (γi)) such that γi ∈ [0, 2.5) dB. Using these and linear interpolation, we

approximate f (γ) as a piece-wise linear function and solve Equation 43 using a

Matlab’s gradient-based optimizer. The results can be observed in Figure 1, which

were obtained assuming a Rayleigh fading channel. Note that model calibration for

Rician fading channels can be performed following a similar procedure.

Table 1 provides optimal values for δ considering all CCSDS LDPC codes. They are

valid for fading channels with K ∈ [0, 10], and have typical and worst absolute errors

2These curves are typically tabulated and can be easily found in the literature. For instance, their values

for Turbo and LDPC codes used in the Consultative Committee for Space Data Systems (CCSDS)

standards can be found in Reference [6].
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(a) FER vs. Eb/N0 Curves (b) Sum of Relative Errors

Figure 1. Model Calibration Example

Table 1. δ∗ for CCSDS LDPC codes

Code Type Code Rate Frame Size δ∗ [dB]

LDPC 1/2 1024 0.866

LDPC 2/3 1024 1.636

LDPC 4/5 1024 3.122

LDPC 1/2 4096 0.777

LDPC 2/3 4096 1.550

LDPC 4/5 4096 2.495

LDPC 1/2 16384 0.659

LDPC 2/3 16384 2.100

LDPC 4/5 16384 2.423

LDPC 7/8 7136 4.005

of ± 0.005 and ±0.25 dB, respectively. Similarly, Figure 2 plots the FER vs. Eb/N0

curves for four of the CCSDS LDPC codes. Each figure includes three sets of plots:

1. A magenta line showing the code performance over an ideal AWGN channel.

2. A set of colored plots that depict the code performance in a fading channel with

given K, computed using Equation 40.

3. A set of black dotted plots that show the same metric estimated using the

proposed ON/OFF model (i.e., Equation 41).

Two conclusions are immediate: First, the slow block fading effects largely degrade the

code performance when compared to a pure AWGN channel; Second, the proposed

ON/OFF model, once properly calibrated, can successfully approximate the FER

curves for all considered cases.
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(a) LDPC 1/2 1024 (b) LDPC 2/3 4096

(c) LDPC 4/5 16384 (d) LDPC 7/8 7136

Figure 2. Calibrated Models

VII. Numerical Results

A. Dual-Copy System Performance

To exemplify the performance of a dual-copy repetition scheme over a fading-impaired

channel, we consider the downlink from the lunar South Pole to a DSN station

introduced in Section I. Figure 3 provides the FER vs. Eb/N0 curves obtained

assuming that the fading process has a Gaussian PSD and K equals 0 and 10,

respectively. Note that in this case, we provide the system performance with respect

to the information bit to noise spectral density ratio as discussed in Section II-D.

In Figure 3 we observe that for large Eb/N0 values, the obtained curves are linear in

the logarithmic domain as expected (see Lemma 10). Additionally, for any given

Eb/N0 value, the corresponding FER over the Rician-faded channel is lower than for

the Rayleigh-faded channel, as secondary copies arriving at the receiver will have less

strength compared to the main line-of-sight (LoS) ray. Furthermore, the gains

obtained by sending a dual copy of any given frame are increasingly notable as their

time separation increases. Indeed, the difference between waiting for half of the

coherence time and a tenth of its value can be more than 10 dB for low frame error

rates.
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(a) K = 0 (b) K = 10

Figure 3. (Asymptotic) Dual Frame Error Probability vs. (large) Eb/N0

At this point, it is worth clarifying why separating two copies of a frame by as much

as possible is not always beneficial. In particular, as τn grows, the second copy of each

frame is increasingly delayed, which poses two problems: On the one hand, if the first

copy of the frame is lost, the receiver needs to wait for a long period of time before

having another chance at getting the data. This is acceptable for delay-tolerant

applications like bulk file transfer, but might be problematic for transmitting

continuous voice and video streams over channels with large coherence times (as is the

case for a downlink from the Moon). On the other hand, the transmitter needs to keep

in memory all frames awaiting transmission of their second copy. Therefore, if the

incoming data rate is sufficiently large, and the channel fading is sufficiently slow, then

the amount of memory required in the spacecraft radio might exceed its technical

capabilities. In either case, however, our analysis shows that significant gains in Eb/N0

can be obtained even if the second copy is sent over channel conditions that are not

perfectly independent (e.g., τn ∈ [5%, 25%]), especially as fading effects worsen.

B. Single vs. Dual-Copy System Performance

In this section we compare the performance of a dual-copy coded system with a

traditional single-copy coded system. Figure 4 plots the obtained results for K = 0

and K = 10 and provides two sets of curves for each sub-figure. First, a dotted black

line that indicates the performance of a single-copy scheme (i.e., p1 vs. γ). Second,

several color-coded curves that indicate the performance of the dual-copy scheme

assuming that the second copy is sent after a given normalized delay τn (i.e., p2 vs.

γ2). Results indicate that:

• For very low Eb/N0 and high FER, the single-copy approach is generally

preferable since you are not doubling the amount of data sent over the channel

(most of which will be erroneously received anyway).

• At typical mission design values (e.g., FER= 10−4), the dual-copy scheme can
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improve the overall system performance by several dB. This improvement is

increasingly notable as the multi-path fading effects worsen (i.e., for smaller

values of K).

(a) K = 0 (b) K = 10

Figure 4. Dual Frame Error Probability vs. Eb/N0

Finally, we define the repetition gap as the difference in Eb/N0 between the dual and

single-copy schemes, conditional on a fixed FER value.3 Figure 5 plots the obtained

curves for K = 0 and K = 10 assuming that τn ≥ 0.5. Note that negative values of the

repetition gap indicate that the dual-copy scheme performs worse than the traditional

single-copy approach and, consequently, it should not be utilized (and vice versa). On

the other hand, for FER=10−5, we conclude that missions affected by a multi-path

fading effects can improve their link performance by approximately 4 to 17 dB. Finally,

note also that for large SNR values (or low FER), the repetition gap increases linearly

in the logarithmic scale, an expected behavior given our asymptotic calculations.4

Figure 5. Repetition Gap vs. Frame Error Probability

3This figure of merit is analogous to the coding gap, but using p1 as a reference point.

4In reality the repetition gap would be limited by the LDPC error floor, which we have ignored in the

proposed channel model.
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VIII. Conclusions

This paper considers the problem of estimating the frame error probability in a

frequency-flat, slow-varying channel experiencing Rayleigh or Rician block fading. To

that end, we consider a system model in which the receiver has perfect timing and

synchronization and show that, after calibration, the overall system can be modeled as

an ON/OFF channel where frames are lost if the fade-level exceeds a certain threshold.

Using this model, we then derive analytic or semi-analytic expressions for the single

and dual-frame error probability, where the latter indicates the probability of not

receiving a frame for which a second copy is transmitted τ seconds apart. Furthermore,

we generalize these results to an n-copy transmission scheme and provide asymptotic

behavior of the frame error rate under large signal-to-noise ratio conditions.

To exemplify the usefulness of combined repetition and forward error correction

schemes in the presence of fading, we compare the end-to-end system performance

with and without frame repetition for a link between the lunar South Pole and a DSN

station. We show that for typical FER values, a dual-copy repetition scheme results in

Eb/N0 savings between 4 and 17 dB, depending on the severity of the multi-path

fading effects and assuming no interleaving is used at the transmitter and receiver.

Therefore, this hybrid scheme can be useful in situations where slow fading prevents

the use of interleaving due to memory and/or latency considerations.
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Appendices

I. Frame Error Probability

A. Rayleigh Fading

To compute the FER over a Rayleigh channel experiencing block fading we simply

integrate its envelope’s probability density distribution:

p1 =

√
δΩp/γ∫
0

α

b0
e−

α2

2b0 dα = 1− e−
δΩp/γ

2b0 = 1− e−
δ
γ (44)

B. Rician Fading

To compute the FER over a Rician channel experiencing block fading we integrate its

envelope’s probability density distribution and utilize the following change of

variables: u = α√
b0

. Then,

p1 =

√
δΩp/γ∫
0

α

b0
e−

α2+s2

2b0 I0

(
αs

b0

)
dα =

=

√
2(K+1) δγ∫

0

ue−
u2+2K

2 I0

(√
2Ku

)
du =

=1−Q
(√

2K,
√

2(K + 1) δγ

)
(45)

II. Dual Frame Error Probability

A. Rayleigh Fading

Given the channel and receiver model described in Section II, the error probability of

a segment sent twice τ seconds apart can be simply estimated as

p2 = P

(
α1 ≤

√
δΩp
γ , α2 ≤

√
δΩp
γ

)
. (46)

Lemma 4 provides a generic formula to evaluate this joint probability as a function of

the channel PSD. In particular,

µ1 =

∞∫
−∞

S(f) cos (2πfτ) df =

∞∫
0

2b0√
2πσf

e
− f2

2σ2
f cos (2πfτ) df = b0ρ (τn) , (47)

where τn = σfτ = τ
Tc

denotes the normalized delay and ρ (τn) = e−2(πτn)2

denotes the

normalized autocorrelation between the envelope level at two instants in time
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separated by τ seconds (see Figure 6). Note that this autocorrelation decays

exponentially with the square of the normalized delay and is negligible for all values

τn ≥ 0.5. In other words, in a flat-fading channel characterized by a Gaussian PSD,

you only need to wait half of the coherence time to obtain independent channel

realizations.

Figure 6. Correlation of the Fading Envelope

On the other hand,

µ2 =

∞∫
−∞

S(f) sin (2π (f − f0) τ) df = 0 (48)

since the integrand is an odd function and the integration domain is symmetric with

respect to 0. Therefore,

A = b20 − γ2
1 − γ2

2 = b20

[
1− e−(2πτn)2

]
= b0

[
1− ρ2

]
. (49)

To obtain p2, we simply substitute the obtained values for µ1 and µ2 into Equation 16.

This yields

p2 =

√
δΩp/γ∫
0

√
δΩp/γ∫
0

α1α2

A
e−

b0
2A (α2

1+α2
2)I0

(α1α2

A
b0ρ
)
dα1dα2

=

√
δΩp/γ∫
0

α1

A
e−

b0
2Aα

2
1

√
δΩp/γ∫
0

α2e
− b0

2Aα
2
2I0

(α1α2

A
b0ρ
)
dα2dα1.

(50)

We now introduce the following change of variables: u =
√

b0
Aα2. Then, after some

simplification we get

p2 =

√
δΩp/γ∫
0

α1

b0
e−

b0
2Aα

2
1

√
2

1−ρ2
δ
γ∫

0

ue−
u2

2 I0

(√
b0
A ρα1u

)
dudα1.

(51)
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Let us now define s =
√

b0
A ρα1. Then,

p2 =

√
δΩp/γ∫
0

α1

b0
e−

b0
2Aα

2
1e

s2

2

√
2

1−ρ2
δ
γ∫

0

ue−
u2+s2

2 I0 (su) dudα1

=

√
δΩp/γ∫
0

α1

b0
e−

b0
2A [1−ρ2]α2

1

[
Q (s, 0)−Q

(
s,
√

2
1−ρ2

δ
γ

)]
.

(52)

Next, we note that Q (s, 0) = 1 ∀s and therefore,

p2 =p1 −

√
δΩp/γ∫
0

α1

b0
e−

α2
1

2b0 Q (s, z) dα1, (53)

where z =
√

2
1−ρ2

δ
γ . Therefore, concentrate our attention on this new integral:

√
δΩp/γ∫
0

α1

b0
e−

α2
1

2b0 Q (s, z) dα1 =

∞∫
0

α1

b0
e−

α2
1

2b0 Q (s, z) dα1 −
∞∫

√
δΩp/γ

α1

b0
e−

α2
1

2b0 Q (s, z) dα1.

(54)

The first term of the right-hand side of this equation can be shown to be equal to e−
δ
γ

using Equation (12) of Reference [7]. Similarly, using Equation (14) of this same

reference results in

∞∫
√
δΩp/γ

α1

b0
e−

α2
1

2b0 Q (s, z) dα1 =e−
δ
γ [1 +Q(zρ, z)−Q(z, zρ)] . (55)

Finally, assume that τn ≥ 0.5 so that µ1 ≈ 0 and A ≈ b20. Then,

P

(
α1 ≤

√
δΩp
γ , α2 ≤

√
δΩp
γ

)
≈

√
δΩp/γ∫
0

√
δΩp/γ∫
0

α1α2

A
e−

b0
2A (α2

1+α2
2)I0 (0) dα1dα2

=

√
δΩp/γ∫
0

α1

b0
e−

b0
2Aα

2
1dα1

√
δΩp/γ∫
0

α2

b0
e−

b0
2Aα

2
2dα2

=P

(
α(t) ≤

√
δΩp
γ

)
P

(
α(t+ τ) ≤

√
δΩp
γ

)
=
[
1− e−

δ
γ

]2

(56)

B. Rician Fading

We wish to estimate the probability that the signal envelope α(t) falls below a certain

threshold
√

δΩp
γ at two instants in time separated by τ seconds. Let α1 = α(t) and
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α2 = α(t+ τ) and consider the case that the transmitters sends an unmodulated tone

at the carrier frequency. Then, from Section II-B, we know that we can express the

complex baseband equivalent of the received signal as

r(t) = [s+NI(t)] + jNQ(t) (57)

r(t+ τ) = [s cos (2πfcτ) +NI(t)] + j [s sin (2πfcτ) +NQ(t)] , (58)

where

NI(t) ∼N (0, b0) (59)

NQ(t) ∼N (0, b0). (60)

Let x1 = NI(t), y1 = NQ(t), x2 = NI(t+ τ) and y2 = NQ(t+ τ), and define the

column vector r =
[
x1 y1 x2 y2

]T
. Then, r(t) and r(t+ τ) are jointly distributed

according to a multivariate normal distribution such that

fr (r) =
1

(2π)2
√
|Σ|

exp

[
−1

2
rTΣ−1r

]
(61)

where

Σ =


b0 0 µ1 µ2

0 b0 −µ2 µ1

µ1 −µ2 b0 0

µ2 µ1 0 b0

 , (62)

φτ = 2πfcτ and

µ1 = 〈x1x2〉 = 〈y1y2〉 =

∞∫
−∞

S(f) cos (2π (f − f0) τ) df (63)

µ2 = 〈x1y2〉 = −〈x2y1〉 =

∞∫
−∞

S(f) sin (2π (f − f0) τ) df. (64)

Note that 〈·〉 is used here to denote the expectation operator. Note also that if s = 0,

then these results equate to Lemma 4.

To compute the distribution of the signal envelope α(t) we first apply the following

change of variables

α1 cos θ1 =s+ x1 (65)

α1 sin θ1 =y1 (66)

α2 cos θ2 =s cosφτ + x2 (67)

α2 sin θ2 =s sinφτ + y2, (68)

and then integrate the resulting joint distribution with respect to θ1 and θ2. In other
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words, define

e =


α1 cos θ1

α1 sin θ1

α2 cos θ2

α2 sin θ2

 , u =


s

0

s cosφτ

s sinφτ

 . (69)

Then,

fα,θ (α1, α2, θ1, θ2) =
α1α2

(2π)2
√
|Σ|

exp

[
−1

2
(e− u)

T
Σ−1 (e− u)

]
(70)

and, therefore,

fα (α1, α2) =

2π∫
0

2π∫
0

fα,θ (α1, α2, θ1, θ2) dθ1dθ2. (71)

Note that while performing the change of variables we have used the fact that

|fr (r) dr| = |fα,θ (α,θ) dαdθ|.

Finally, expanding the term (r − u)
T

Σ−1 (r − u) and simplifying the corresponding

equation yields the result from Lemma 6.

C. Rician Fading with Gaussian PSD

If we assume the channel is Rician and characterized by a Gaussian PSD, then further

simplifications are possible. In particular,

fα (α1, α2) =
α1α2

(2π)2A
e−

b0
2A (z1−2s2z5)

2π∫
0

g1 (z2)

2π∫
0

g2 (z3, z4) dθ2

 dθ1 (72)

where

z1 =α2
1 + α2

2 (73)

z2 =ρ cos (θ1 − φτ )− cos θ1 (74)

z3 =ρ cos θ2 − cos (θ2 − φτ ) (75)

z4 =ρ cos (θ1 − θ2) (76)

z5 =ρ cosφτ − 1 (77)

and φτ is defined as before. Expanding all terms in g2 (z3, z4) and grouping them in

terms of cos θ2 and sin θ2 yields

2π∫
0

g2 (z3, z4) dθ2 =

2π∫
0

ex1 cos θ2+x2 sin θ2dθ2 = 2πI0

(√
x2

1 + x2
2

)
, (78)

where

x1 =
sb0α2

A

[
cosφτ + ρ

(α1

s
cos θ1 − 1

)]
(79)

x2 =
sb0α2

A

[
sinφτ +

α1

s
ρ sin θ1

]
. (80)
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Therefore,

fα (α1, α2) =
α1α2

2πA
e−

b0
2A (z1−2s2z5)

2π∫
0

g1 (z2) I0

(√
x2

1 + x2
2

)
dθ1, (81)

which, after some simplification, yields

fα (α1, α2) =
α1α2

2πA
e−

b0
2A [α2

1+α2
2−2s2B]

2π∫
0

e−
α1sb0
A [B cos θ1+C sin θ1]I0 (Dα2) dθ1, (82)

and

A =b20
[
1− ρ2

]
(83)

B =ρ cosφτ − 1 (84)

C =ρ sinφτ (85)

D =
sb0
A

√
1 + ρ2y1 + 2ρy2 (86)

y1 =
(α1

s

)2

− 2α1

s
cos θ1 + 1 (87)

y2 =
α1

s
cos (θ1 − φτ )− cosφτ . (88)

Next, we modify the integration order so that

p2 =

√
δΩp/γ∫
0

2π∫
0

α1

2π
e−

b0
2A [α2

1−2s2B]−α1sb0
A [B cos θ1+C sin θ1]Υ (α1, θ1) dθ1dα1, (89)

where

Υ (α1, θ1) =

√
δΩp/γ∫
0

α2

A
e−

b0
2Aα

2
2I0 (Dα2) dα2 (90)

and we then concentrate our attention on this new integral, which we solve using the

change of variables u =
√

b0
Aα2:

Υ (α1, θ1) =

∞∫
0

u

b0
e−

u2

2 I0 (zu) du−
∞∫

√
2(K+1)

1−ρ2
δ
γ

u

b0
e−

u2

2 I0 (zu) du

=
e
z2

2

b0


∞∫

0

u

b0
e−

u2+z2

2 I0 (zu) du−
∞∫

√
2(K+1)

1−ρ2
δ
γ

u

b0
e−

u2+z2

2 I0 (zu) du


=
e
z2

2

b0

[
1−Q

(
z,
√

2(K+1)
1−ρ2

δ
γ

)]
,

(91)
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with z =
√

2K 1+ρ2y1+2ρy2

1−ρ2 .

At this point, we need to evaluate the two parts of this result separately. Therefore,

we first solve

√
δΩp/γ∫
0

α1

2πb0
e−

b0
2A [α2

1−2s2B]
2π∫
0

e
z2

2 −
α1sb0
A [B cos θ1+C sin θ1]dθ1dα1 =

√
δΩp/γ∫
0

α1

2πb0
e−

b0
2A [α2

1−2s2B]ex1

2π∫
0

ex2 cos θ1dθ1dα1 =

√
δΩp/γ∫
0

α1

b0
e−

b0
2A [α2

1−2s2B]+x1I0

(
sα1

b0

)
dα1 =

√
δΩp/γ∫
0

α1

b0
e−

α2
1+s2

2b0 I0

(
sα1

b0

)
dα1 = 1−Q

(√
2K, 2(K + 1)

√
δ
γ

)
= p1

(92)

using

x1 =
ρ2

2b0(1− ρ2)
α2

1 +K
1 + ρ2 − 2ρ cosφτ

1− ρ2
(93)

x2 =
s

b0
α1, (94)

and the fact that the very last expression has already been solved in Appendix A-B.

Therefore, at this point we have proven that

p2 = p1 −

√
δΩp/γ∫
0

2π∫
0

α1

2πb0
e−

b0
2A [α2

1−2s2B]+x1+x2 cos θ1Q

(
z,
√

2(K+1)
(1−ρ2)

δ
γ

)
dθ1dα1, (95)

which, after some simplification, yields the result in Lemma 7.
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D. Independent Rician Fading with Gaussian PSD

We now consider the case that τn ≥ 0 so that ρ ≈ 0. Then, x1 ≈ K, z ≈
√

2K, and

B ≈ −1, which yields

p2 ≈p1 −

√
δΩp/γ∫
0

2π∫
0

α1

2πb0
e−

b0
2A [α2

1+2s2]+ s2

2b0
+x2 cos θ1Q

(√
2K,

√
2(K+1)
(1−ρ2)

δ
γ

)
dθ1dα1

=p1 −Q
(√

2K,
√

2(K+1)
(1−ρ2)

δ
γ

) √δΩp/γ∫
0

α1

2πb0
e−

b0
2A [α2

1+s2]
2π∫
0

ex2 cos θ1dθ1dα1

=p1 −Q
(√

2K,
√

2(K+1)
(1−ρ2)

δ
γ

) √δΩp/γ∫
0

α1

2πb0
e−

b0
2A [α2

1+s2]I0

(
sα1

b0

)
dα1

=p1 −Q
(√

2K,
√

2(K+1)
(1−ρ2)

δ
γ

)[
1−Q

(√
2K,

√
2(K+1)
(1−ρ2)

δ
γ

)]
=
[
1−Q

(√
2K,

√
2(K + 1) δγ

)]2
= p2

1.

(96)

Note that this confirms the intuition that two channel realizations far apart will be

independent from each other and therefore the joint loss probability is simply the

product of the marginal probabilities.

III. Asymptotic Behavior

To obtain the asymptotic behavior of pn when γ →∞ we use the following procedure:

First we obtain the derivative of pn with respect to γ. Then, we find the asymptotic

behavior of that derivative for γ →∞. Finally, we integrate the result to obtain the

asymptotic behavior of pn.

Before proceeding with the proof, we define a few of its building blocks. For instance,

let f(x, t) be a continuous differentiable function. Then, the Leibniz rule of

differentiation states that

∂

∂x

 b(x)∫
a(x)

f(x, t)dt

 = f (x, b(x))
∂b(x)

∂x
− f (x, a(x))

∂a(x)

∂x
+

b(x)∫
a(x)

∂

∂x
f(x, t)dt. (97)

Similarly, let us also define the following function:

hk (γ, αk) =

√
δΩp
γ∫

0

(n−k)
· · ·

√
δΩp
γ∫

0

2π∫
0

(n)
· · ·

2π∫
0

[
n∏
i=1

αie
− 1

2z
TΣ−1z

]
dθ

n∏
i>k

dαi, (98)
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where z = e− su, e and u are defined as in Lemma 9. Then, we note the following

properties:

pn =
h0(γ)

(2π)
n
√
|Σ|

=
1

(2π)
n
√
|Σ|

√
δΩp
γ∫

0

h1 (γ, α1) dα1, (99)

hk(γ, αk) =

√
δΩp
γ∫

0

hk+1(γ, αk+1)dαk+1 (100)

∂

∂γ
hk (γ, αk) ∝


1

γ
3
2
hk+1

(
γ, αk+1=

√
δΩp
γ

)
+

√
δΩp
γ∫

0

∂
∂γhk+1 (γ, αk+1)αk+1 if k ∈ [1, n−1]

0 if k = n,

(101)

1

γ
3
2

hk+1

(
γ, αk+1=

√
δΩp
γ

)
=

√
δΩp
γ∫

0

(n−k−1)
· · ·

√
δΩp
γ∫

0

2π∫
0

(n)
· · ·

2π∫
0

n∏
i 6=k+1

αe−
1
2z

TΣ−1zdθ

n∏
i>k

dαi

∝ 1

γ
3
2

1

γ
1
2

[
k∏
i=1

αi

]
n∏

i=k+1


√
δΩp
γ∫

0

αidαi


∝ 1

γn−k+1

k∏
i=1

αi.

(102)

Equation 102 is only valid for γ →∞ since we have used the fact that

e−
1
2z

TΣ−1z ∼ 1 + o
(

1√
γ

)
(103)

when zTΣ−1z is evaluated at

z =
[
α1 cos θ1 α1 sin θ1 · · ·

√
δΩp
γ cos θk+1

√
δΩp
γ sin θk+1 · · · αn cos θn αn sin θn

]
.

(104)

Combining Equations 101 and 102 for k = n− 1 yields

∂

∂γ
hn−1 (γ, αn−1) ∝ 1

γ2

n−1∏
i=1

αi + 0. (105)

This value can now be used recursively to evaluate hn−2 (γ, αn−2) and its predecessors.

For instance,

∂

∂γ
hn−2 (γ, αn−2) ∝ 1

γ3

n−2∏
i=1

αi +
1

γ2

n−2∏
i=1

αi

√
δΩp
γ∫

0

αn−1dαn−1 ∝
1

γ3

n−2∏
i=1

αi (106)
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and, therefore, we obtain the following general expression:

∂

∂γ
hk (γ, αk) ∝ 1

γn−k+1

k∏
i=1

αi. (107)

Finally, we recall that pn is proportional to hk (γ, αk) when k = 0. Therefore,

∂

∂γ
pn ∝

1

γn+1
(108)

and, consequently,

pn ∝
∫

1

γn+1
∝ 1

γn
. (109)
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